A Shimadzu LC/MS/MS foszfolipid MRM-könyvtár két módszert tartalmaz: egyet a foszfolipidek osztályozására a biológiai minták fő foszfolipideinek átfogó elemzéséhez, a másikat pedig a zsírsavösszetétel meghatározására, amelyet az osztályozási módszerrel kapott analitikai eredmények felhasználásával hoztak létre. A könyvtár a 14-22 szénatomszámú zsírsavakat tartalmazó foszfolipideket célozza meg, és több mint 867 komponenshez tartalmaz MRM-átmeneteket. A könyvtár lehetővé teszi a foszfolipid profilalkotás elvégzését egy foszfolipid osztályozási módszerrel végzett kezdeti elemzéssel. Ezt követi egy módszer létrehozása a zsírsavösszetétel meghatározására az első analízis során kimutatott foszfolipidcsúcs alapján, majd ezt használva egy második elemzés elvégzése során a zsírsavösszetétel meghatározása történik meg.

Foszfolipid Célkomponensek

Az MRM könyvtárban regisztrált foszfolipidek zsírsavösszetétele az alábbi táblázatban látható szénatomszámú és kettős kötés kombinációkkal rendelkezik. A könyvtár foszfolipid célkomponensei a lizocsoporttal rendelkező foszfatidilkolinok (PC), a foszfatidil-etanol-aminok (PE), a foszfatidil-glicerin (PG), a foszfatidil-inozitol (PI), a foszfatidil-szerinek (PS) és a szfingomielinek (SM).

MRM Átmenetek

A jellegzetes foszfolipid főcsoportra fókuszálva a könyvtár tartalmaz egy foszfolipid osztályozási módszert és egy zsírsavösszetétel meghatározási módszert (az adott kombinációk zsírsavösszetételeihez), amelyek ezeket az MRM átmeneteket használják ki. Az alábbi ábra a PC azonosításához szükséges egyes MRM-átmeneteket mutatja (18:1/16:0). A foszfolipidre az ezekből az MRM-átmenetekből kapott analitikai eredmények kombinálásával lehet következtetni.

A könyvtár használata

1.lépés: Szimultán analízis a foszfolipid osztályozási módszerrel

A foszfolipid osztályozási módszer alkalmas a főbb foszfolipidek átfogó elemzésére a biológiai mintákban. A foszfolipidek jellemző főcsoportjai alapján határozza meg a foszfolipid osztályt. Az elemzési célpontok a 14-22 szénatomos zsírsavakat tartalmazó foszfolipidek.

2.lépés: Csúcsazonosítás

A foszfolipid osztályozási módszerrel kimutatott foszfolipidcsúcsok azonosítása. A kimutatott foszfolipid szerkezeti információja ezen a ponton a foszfolipid osztály (PC, PE, PG, PI, PS, SM), valamint az összes szénatomszám és a kettős kötések száma az alkotó zsírsavakban. A következő lépésben elkészítjük a zsírsavösszetétel meghatározási módszert.

3.lépés: MRM Event-Link Editor: A zsírsavösszetétel meghatározási módszer szerkesztése

A szoftver lehetővé teszi a zsírsav-összetétel meghatározására szolgáló módszer szerkesztését a rendelkezésre álló 867 MRM-átmenetet felhasználva az első elemzés során észlelt foszfolipidcsúcshoz.

4.lépés: Szimultán elemzés zsírsavösszetétel-meghatározási módszerrel

Az MRM Event-Link Editorban szerkesztett zsírsav-összetétel-meghatározási módszert felhasználva egy második elemzés történik ugyanazon a mintán. A foszfolipid profilalkotás az első és a második elemzés eredményei alapján végezhető el.

5. lépés: Adatelemzés

Az mérési eredmények alapján megállapítható, hogy a minta PC(16:0/20:1)-t és PC(18:0/18:1) komponenst is tartalmaz, amint az az alábbi ábrákon látható.

Ha tetszett, oszd meg:

Regisztráció

Miért érdemes regisztrálnia?

  • hozzáférhet védett tartalmakhoz, applikációkhoz
  • feliratkozhat szakmai hírleveleinkre, melyekben értesítjük az Ön szakterületét érintő friss hírekről
  • igénybe veheti online support szolgáltatásunkat

addRegisztrálok

Friss tartalom

Az 1. rész leírja a mintaüvegek adszorpciójának mechanizmusait, és azt, hogyan csökkenthető ez az adszorpció kereskedelmi forgalomba hozott, alacsony adszorpciós fiolák (LabTotal Vial és TORASTTM-H Bio Vial) használatával. Az utóbbi időben számos kérés érkezett alacsony adszorpciós polipropilén (PP) pipettahegy (PP tip) kifejlesztésére. Ezek a kérések olyan felhasználóktól érkeznek, akik szabványos PP hegyeket használnak mintavételre, hígításra és minta-előkészítésre, és azt tapasztalták, hogy az adszorpció rontja az analitikai eredmények megbízhatóságát.

Ennek megfelelően, a TORAST-H Bio Vial fejlesztését folytatva, a Shimadzu a PP hegyekhez való adszorpciót is vizsgálta, és megkezdte egy alacsony adszorpciós PP hegy kifejlesztését, és a világon először forgalomba hozta a TORAST-H pipettahegyet. Ebben a részben bemutatjuk a PP hegyek adszorpciójának jelenségét, áttekintést adunk a TORAST-H Tipről, és ismertetjük annak adszorpciót csökkentő hatását.

Összefoglalónkkal szeretnénk rávilágítani a komponensek vialban történő adszorpciójának problémájára, lehetséges megoldására.

Az automata mintaadagolóval injektált minta kapilláris csöveken keresztül jut el a(z) (U)HPLC oszlophoz. Ha a mintaoldószer és a mozgófázis nem megfelelően keveredik amíg a minta eléri az oszlopot, a csúcs alakja torzulhat. A csúcs kiszélesedik, ha a mozgófázisnál nagyobb elúciós erősségű mintaoldószert használunk. Ez hatványozottan jelentkezik a kisebb belső átmérőjű csöveket alkalmazó UHPLC-rendszerek esetén.

A folyadék-folyadék extrakció (LLE), támogatott folyadék extrakció (SLE), és szilárd fázisú extrakció (SPE) technikák már évtizedek óta léteznek, és ha szerves minta-előkészítést végez, akkor legalább az egyik technikában már járatos. De ismeri-e mindegyik technikát? Miben hasonlóak? Miben különbözőek? Tekintse át ezt velünk!

A Shimadzu LC/MS/MS foszfolipid MRM-könyvtár két módszert tartalmaz: egyet a foszfolipidek osztályozására a biológiai minták fő foszfolipideinek átfogó elemzéséhez, a másikat pedig a zsírsavösszetétel meghatározására, amelyet az osztályozási módszerrel kapott analitikai eredmények felhasználásával hoztak létre. A könyvtár a 14-22 szénatomszámú zsírsavakat tartalmazó foszfolipideket célozza meg, és több mint 867 komponenshez tartalmaz MRM-átmeneteket. A könyvtár lehetővé teszi a foszfolipid profilalkotás elvégzését egy foszfolipid osztályozási módszerrel végzett kezdeti elemzéssel. Ezt követi egy módszer létrehozása a zsírsavösszetétel meghatározására az első analízis során kimutatott foszfolipidcsúcs alapján, majd ezt használva egy második elemzés elvégzése során a zsírsavösszetétel meghatározása történik meg.

A bomlásból származó hisztamin és tiramin, a hisztidin és a tirozin degradációjából keletkezik mikroorganizmusok hatására. Ha a lefogyasztott élelmiszerek, előre feldolgozott termékek, vörös húsú halak mint tonhal, bonito, makréla stb., nagy mennyiségű hisztamint tartalmaznak, akkor ételmérgezési tünetek jelentkezhetnek úgy mint láz, kiütések, szívdobogás. Az erjesztett élelmiszerekhez -mint bor vagy sajt- szintén kapcsolódhat hasonló jelenség. Ezenkívül a tiramin is erősítheti a hisztamin toxicitását, és az élelmiszerrel összefüggő migrén okozójaként jelentették.

Bár Japánban nincsenek speciális hisztaminnal kapcsolatos előírások, más országokban, beleértve az Egyesült Államokat és az EU-t, a hal- és halászati termékekre vonatkozóan a Codex (Nemzetközi Élelmiszer Szabványok) szabályozási határértékeit állapították meg. Mivel a tiramin és a hisztamin -az aminosavakhoz hasonlóan- aminocsoportot tartalmaz, a fluoreszcencia detektálása lehetséges az orto-ftal-aldehiddel (OPA) való derivatizálással. Itt bemutatunk egy példát a tiramin és a hisztamin elemzésére a Prominence Amino Acid Analysis rendszer segítségével, amelyben a detektálást oszlop utáni fluoreszcens származékképzéssel végezzük. Az ehhez az alkalmazáshoz rendelkezésre álló mozgófázis és reagens készlet tartalmazza a szükséges mozgófázisokat és reagenseket, így kiküszöbölik a mozgófázis előkészítésétéből adódó bizonytalanságot. Ezen kívül, mivel a minta előkezelése csak szűrést és hígítást tartalmaz ennél az alkalmazásnál, így az elemzés bonyolult feldolgozás nélkül is elvégezhető.

2021. szeptember 1-től a Simkon Kft. látja el a Biotage teljes körű képviseletét Magyarországon.

A tandem tömegspektrométer és a Probe Electrospray Ionization (PESI) módszer kombinációja lehetővé teszi Everolimus és Abirateron komponensek kvantitatív vizsgálatát plazmából, közvetlenül a fehérjekicsapást követően.

A megfelelő rendszerindítási folyamat: a HPLC rendszer ekvilibrálása és a specifikus rendszeralkalmassági teszt (SST) futtatása kritikus lépések az LC futtatások előtt azért, hogy biztosítsuk a magas adatminőséget (reprodukálhatóság, pontosság, stb.) és hogy csökkentsük a karbantartás költségeit, növeljük az oszlop élettartamát. Ezek a lépések időigényesek a felhasználó számára, de ha nem megfelelően végzi ezeket el, az adatromláshoz és a szükséges újramérés miatti időveszteséghez vezetnek. Ebben az összefoglalóban azt mutatjuk be, hogy a Shimadzu hogyan tudja automatikusan felkészíteni a készüléket a mérésre.

A sejttenyésztési folyamatok optimalizálása és ellenőrzése elengedhetetlen a biofarmakonok termelési hatékonyságának növeléséhez. A sejtterápia területén -beleértve a regeneratív gyógyászati eljárásokat is- különösen fontossá vált a tenyésztési folyamatok fokozott ellenőrzése, csökkentve ezzel a sejtek variabilitását és javítva a sejtek tömegtermelésének konzisztenciáját. Ezen célokra hasznos információt ad a kutatóknak a sejttenyészet felülúszó összetevőinek monitorozása. Jelenleg a tenyésztési folyamat felügyeletét pH méréssel, oldódó gázok és néhány komponens, pl.: glükóz, glutamin, laktát és ammónia mennyiségének mérésével végzik.