Az automata mintaadagolóval injektált minta kapilláris csöveken keresztül jut el a(z) (U)HPLC oszlophoz. Ha a mintaoldószer és a mozgófázis nem megfelelően keveredik amíg a minta eléri az oszlopot, a csúcs alakja torzulhat. A csúcs kiszélesedik, ha a mozgófázisnál nagyobb elúciós erősségű mintaoldószert használunk. Ez hatványozottan jelentkezik a kisebb belső átmérőjű csöveket alkalmazó UHPLC-rendszerek esetén.

Koffein fordított fázisú, metanol:víz (3:7) elegyével történő kromatográfiás elválasztása esetén, a mintaoldószer elúciós erősségének hatását a csúcsalakra az 1. ábra mutatja. A csúcsszélességet az elméleti tányérszámszám (TPN) reprezentálja. Mintaoldószerként a mozgófázisnál nagyobb elúciós erősségű metanolt használva kisebb elméleti tányérszámokat kapunk szemben a vízzel, melynek kisebb az elúciós erőssége. Ha az injektált térfogatot növeljük, akkor még jelentősebb különbség látható a két oldószer között.

A 2. ábra az injektált térfogat és a csúcsalak között fennálló összefüggést mutatja. A kísérlet során a mintaoldószer metanol volt, a minta koncentrációját úgy állították be, hogy az oszlopra injektált koffein mennyiége azonos legyen. Az ábrán jól látható, hogy a csúcsalak torzul az injektálás térfogatának növelésével.

A 3. ábrán látható, hogy a nagyobb elúciós erősségű mintaoldószer használata gyorsabban mozgatja a komponenseket az oszlopon, mint a mozgófázis (A). Ezzel szemben a kisebb elúciós erősségű mintaoldószert alkalmazva, a mintakomponens koncentrálódik az oszlop tetején, majd a mozgófázis és az állófázis együttes hatására kezdődik meg az elúció (B). A mozgófázisnál kisebb elúciós erősségű mintaoldószer használata élesebb csúcsalakot eredményez, az analit diffúziója elnyomható az oszlopon.

Ugyanakkor, vannak olyan esetek, ahol a mintát nagyobb elúciós erősségű oldószerrel (pl. 100% metanol) kell előkészíteni pl. extrakciós okokból, ami csúcsalaktorzulást okoz, melynek kiküszöbölésére további mintaelőkészítési műveleteket (pl. hígítás) kell beiktatni.

A Nexera sorozat (LC-40) és az i-Series mintaadagolói számos mintaelőkészítési funkcióval rendelkeznek, ilyen például a Co-injection funkció. A 4. ábrán ennek a funkciónak a működése látható, amelynél lehetőség van arra, hogy egy külön vialból oldószert szívjunk a mintához, majd mintával együtt az analitikai oszlopra fecskendezzünk. Ezzel a funkcióval élesebb csúcs érhető el hígítás nélkül.

Az 5. ábra egy olyan kísérletsorozat mutat be, ahol a mintaoldószer elúciós erőssége nagyobb volt, mint a mozgófázisé. A futtatások standard injektálással és Co-injection funkcióval (alkalmazott oldószer: víz), és különböző injektálási térfogattal történtek. Az ábrán látható, hogy Co-injektálás esetén a megnövelt injektálási térfogat nem torzítja a csúcsalakot, így nem szükséges további mintaelőkészítési lépések beiktatása a megfelelő érzékenység eléréséhez.

Ha tetszett, oszd meg:

Regisztráció

Miért érdemes regisztrálnia?

  • hozzáférhet védett tartalmakhoz, applikációkhoz
  • feliratkozhat szakmai hírleveleinkre, melyekben értesítjük az Ön szakterületét érintő friss hírekről
  • igénybe veheti online support szolgáltatásunkat

addRegisztrálok

Friss tartalom

Az 1. rész leírja a mintaüvegek adszorpciójának mechanizmusait, és azt, hogyan csökkenthető ez az adszorpció kereskedelmi forgalomba hozott, alacsony adszorpciós fiolák (LabTotal Vial és TORASTTM-H Bio Vial) használatával. Az utóbbi időben számos kérés érkezett alacsony adszorpciós polipropilén (PP) pipettahegy (PP tip) kifejlesztésére. Ezek a kérések olyan felhasználóktól érkeznek, akik szabványos PP hegyeket használnak mintavételre, hígításra és minta-előkészítésre, és azt tapasztalták, hogy az adszorpció rontja az analitikai eredmények megbízhatóságát.

Ennek megfelelően, a TORAST-H Bio Vial fejlesztését folytatva, a Shimadzu a PP hegyekhez való adszorpciót is vizsgálta, és megkezdte egy alacsony adszorpciós PP hegy kifejlesztését, és a világon először forgalomba hozta a TORAST-H pipettahegyet. Ebben a részben bemutatjuk a PP hegyek adszorpciójának jelenségét, áttekintést adunk a TORAST-H Tipről, és ismertetjük annak adszorpciót csökkentő hatását.

Összefoglalónkkal szeretnénk rávilágítani a komponensek vialban történő adszorpciójának problémájára, lehetséges megoldására.

Az automata mintaadagolóval injektált minta kapilláris csöveken keresztül jut el a(z) (U)HPLC oszlophoz. Ha a mintaoldószer és a mozgófázis nem megfelelően keveredik amíg a minta eléri az oszlopot, a csúcs alakja torzulhat. A csúcs kiszélesedik, ha a mozgófázisnál nagyobb elúciós erősségű mintaoldószert használunk. Ez hatványozottan jelentkezik a kisebb belső átmérőjű csöveket alkalmazó UHPLC-rendszerek esetén.

A folyadék-folyadék extrakció (LLE), támogatott folyadék extrakció (SLE), és szilárd fázisú extrakció (SPE) technikák már évtizedek óta léteznek, és ha szerves minta-előkészítést végez, akkor legalább az egyik technikában már járatos. De ismeri-e mindegyik technikát? Miben hasonlóak? Miben különbözőek? Tekintse át ezt velünk!

A Shimadzu LC/MS/MS foszfolipid MRM-könyvtár két módszert tartalmaz: egyet a foszfolipidek osztályozására a biológiai minták fő foszfolipideinek átfogó elemzéséhez, a másikat pedig a zsírsavösszetétel meghatározására, amelyet az osztályozási módszerrel kapott analitikai eredmények felhasználásával hoztak létre. A könyvtár a 14-22 szénatomszámú zsírsavakat tartalmazó foszfolipideket célozza meg, és több mint 867 komponenshez tartalmaz MRM-átmeneteket. A könyvtár lehetővé teszi a foszfolipid profilalkotás elvégzését egy foszfolipid osztályozási módszerrel végzett kezdeti elemzéssel. Ezt követi egy módszer létrehozása a zsírsavösszetétel meghatározására az első analízis során kimutatott foszfolipidcsúcs alapján, majd ezt használva egy második elemzés elvégzése során a zsírsavösszetétel meghatározása történik meg.

A bomlásból származó hisztamin és tiramin, a hisztidin és a tirozin degradációjából keletkezik mikroorganizmusok hatására. Ha a lefogyasztott élelmiszerek, előre feldolgozott termékek, vörös húsú halak mint tonhal, bonito, makréla stb., nagy mennyiségű hisztamint tartalmaznak, akkor ételmérgezési tünetek jelentkezhetnek úgy mint láz, kiütések, szívdobogás. Az erjesztett élelmiszerekhez -mint bor vagy sajt- szintén kapcsolódhat hasonló jelenség. Ezenkívül a tiramin is erősítheti a hisztamin toxicitását, és az élelmiszerrel összefüggő migrén okozójaként jelentették.

Bár Japánban nincsenek speciális hisztaminnal kapcsolatos előírások, más országokban, beleértve az Egyesült Államokat és az EU-t, a hal- és halászati termékekre vonatkozóan a Codex (Nemzetközi Élelmiszer Szabványok) szabályozási határértékeit állapították meg. Mivel a tiramin és a hisztamin -az aminosavakhoz hasonlóan- aminocsoportot tartalmaz, a fluoreszcencia detektálása lehetséges az orto-ftal-aldehiddel (OPA) való derivatizálással. Itt bemutatunk egy példát a tiramin és a hisztamin elemzésére a Prominence Amino Acid Analysis rendszer segítségével, amelyben a detektálást oszlop utáni fluoreszcens származékképzéssel végezzük. Az ehhez az alkalmazáshoz rendelkezésre álló mozgófázis és reagens készlet tartalmazza a szükséges mozgófázisokat és reagenseket, így kiküszöbölik a mozgófázis előkészítésétéből adódó bizonytalanságot. Ezen kívül, mivel a minta előkezelése csak szűrést és hígítást tartalmaz ennél az alkalmazásnál, így az elemzés bonyolult feldolgozás nélkül is elvégezhető.

2021. szeptember 1-től a Simkon Kft. látja el a Biotage teljes körű képviseletét Magyarországon.

A tandem tömegspektrométer és a Probe Electrospray Ionization (PESI) módszer kombinációja lehetővé teszi Everolimus és Abirateron komponensek kvantitatív vizsgálatát plazmából, közvetlenül a fehérjekicsapást követően.

A megfelelő rendszerindítási folyamat: a HPLC rendszer ekvilibrálása és a specifikus rendszeralkalmassági teszt (SST) futtatása kritikus lépések az LC futtatások előtt azért, hogy biztosítsuk a magas adatminőséget (reprodukálhatóság, pontosság, stb.) és hogy csökkentsük a karbantartás költségeit, növeljük az oszlop élettartamát. Ezek a lépések időigényesek a felhasználó számára, de ha nem megfelelően végzi ezeket el, az adatromláshoz és a szükséges újramérés miatti időveszteséghez vezetnek. Ebben az összefoglalóban azt mutatjuk be, hogy a Shimadzu hogyan tudja automatikusan felkészíteni a készüléket a mérésre.

A sejttenyésztési folyamatok optimalizálása és ellenőrzése elengedhetetlen a biofarmakonok termelési hatékonyságának növeléséhez. A sejtterápia területén -beleértve a regeneratív gyógyászati eljárásokat is- különösen fontossá vált a tenyésztési folyamatok fokozott ellenőrzése, csökkentve ezzel a sejtek variabilitását és javítva a sejtek tömegtermelésének konzisztenciáját. Ezen célokra hasznos információt ad a kutatóknak a sejttenyészet felülúszó összetevőinek monitorozása. Jelenleg a tenyésztési folyamat felügyeletét pH méréssel, oldódó gázok és néhány komponens, pl.: glükóz, glutamin, laktát és ammónia mennyiségének mérésével végzik.